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A novel crystallographic analysis is undertaken of atomic movements in deformation twinning of 
metals. Body-centred cubic metals, indium and mercury are treated in detail, and it is established 
that the operative twinning mode always involves the smallest possible homogeneous shear which 
could twin the lattice. An analogous criterion is developed for multiple lattices. 

Introduct ion 

Twinned crystals are usually analysed in terms of four 
crystallographic twinning elements K 1, K~, ~1, ~/~, 
which are well known (Schmid & Boas, 1950; Hall, 
1954) and which require little detailed description 
here. K 1 denotes the composition or twinning plane, 
and Ks denotes the second undistorted plane as- 
sociated with K~; ~Tx, ~12 denote directions lying respec- 
t ively in Kt, K s perpendicular to the line of inter- 
section of K~ and K s (Fig. 1). Mechanical twinning is 

A 
Fig. 1. K t denotes the  twinning  plane, and ~/1 the  shear 

direction. K~ denotes the  second undis to r ted  plane. 

achieved by a homogeneous macroscopic shear paral- 
lel to Kt along the direction ~h (referred to hereafter 
as the shear or twinning direction), the amount of 
the shear being given by S = 2 cot 2% where 2q 
denotes the angle between ~ and ~7~. The plane 
perpendicular to Kx passing through ~s (and hence 
also through ~ )  is termed the plane of shear. In  all 
metals, with the exception of certain twinning modes 
of c~-uranium, an examination of the crystal structure 
reveals tha t  the plane of shear is a plane of symmetry  
of the crystal. However, contrary to what is sometimes 
stated, there is no obvious reason why this should be 
the case. There are two distinct kinds of twinning, 
referred to as first and second. In  twinning of the first 
kind, K1 is rational, and may  be regarded as the plane 
of an imagined mirror which reflects the structure of 
the twin into tha t  of the matrix. In  twinning of the 
second kind, Kx is irrational, but ~t is rational, and 
may  be regarded as the direction of an imagined axis 
about which a rotation of 180 ° transforms the strut-  

ture of the twin into tha t  of the matrix. For any given 
mode 

Kl=(hkl), Kg=(h'k'l'), ~I=[UVW], ~9=[U'V'W'], 

there exists theoretically a conjugate or reciprocal 
mode 

K~=(h'k'l'), Kg=(hkl), ~I=[U'V'W'], ~=[UVW], 

involving the same macroscopic shear. From the 
macroscopic point of view, there should be nothing 
to choose between a mode and its conjugate, but  in 
certain crystal structures only one of the pair is found 
to be operative. As far as we are aware, no mechanical 
twinning has ever been substantiated in f.c.c, metals 
and in diamond. Mechanical twins have been reported 
in germanium and silicon under special conditions of 
temperature and loading, but the data  are not suf- 
ficiently precise to allow a definitive assignment of 
the twinning elements. Apart  from these cases, twin- 
ning has been established in all other metals as a 
possible mode of plastic deformation. 

In the present paper, we undertake a new crystallo- 
graphic t reatment  of twinning of the first kind by 
projecting the crystal on to K1; in effect, we examine 
the stacking properties of the crystal planes parallel 
to K r This enables a very clear picture to be obtained 
of the atomic movements required for twinning, and 
one which is more elegant and powerful than the usual 
picture obtained by mapping on to the plane of the 
shear. In  spite of its simplicity and relevance, such 
an approach has never before been systematically 
pursued. The method is first applied to simple lattices, 
i.e. those defined by the crystal structures of the b.c.c. 
metals, indium and mercury, for in these cases mechan- 
ical twinning may  be achieved by a shear which is 
homogeneous on the atomic scale. Projecting on Kt  
reveals the following property of the operative twin- 
ning direction ~x: of all the possible homogeneous 
shears parallel to K1 tha t  twin the lattice, the shear 
along ~ has the smallest magnitude. This result is 
not unexpected, but, as far as we are aware, has never 
been explicitly proved or even stated. The analysis 
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is then extended to examine the factors which deter- 
mine the choice of K i. Given any lattice plane K, 
projecting on K enables us to deduce the homogeneous 
twinning shear of smallest magnitude parallel to K, 
the amount  of this hypothetical shear being denoted 
~ .  Applying an inequality theorem proved in the 
text,  we arrive at  the following significant conclusion" 
for a given lattice, ~ at tains a minimum value S on 
the planes of indices K1 and K s. Accordingly, the 
operative mode in a lattice may be predicted by means 
of a simple, formal, geometrical requirement, that  of 
minimum homogeneous twinning shear. This result 
may  be readily understood in terms of the theory of 
dislocations. The mobili ty of a dislocation depends 
critically on the ratio of its Burgers vector, b, to the 
interplanar spacing, d, and increases as b/d decreases 
(Cottrell, 1953). In  the present context b/d is to be 
identified with 5f, so tha t  the minimum value of the 
ratio is given by S. 

Mechanical twinning in a multiple lattice, e.g. tha t  
defined by the c.p.h, crystal structure, cannot be 
completely homogeneous on the atomic scale, so that  
an extension of the analysis is required. This is effected 
by introducing a new notion, that  of the semi. 
homogeneous shear, which may  be roughly described 
as a shear homogeneous on the finest possible scale 
compatible with producing a twinned configuration; 
a rigorous definition is given in the text. The magnitude 
and direction of the semi-homogeneous shear are 
defined to be those of its homogeneous component, 
the lat ter  being identified with the macroscopic 
twinning shear. On this basis a quanti tat ive theory 
of multiple lattices may be developed. Projecting on 
K i reveals the following property of the operative 
twinning direction ~1" of all the possible semi- 
homogeneous shears parallel to Kx tha t  twin the 
crystal, the shear along z h has the smallest magnitude. 
As a corollary, given a composition plane, but not 
the shear direction, theoretical analysis should suffice 
to determine the latter, and hence also the magnitude 
of the twinning shear. For instance, a plane (1011), 
of ill-defined shear direction ~h, has been reported by 
Schiebold & Siebel (1931) as operative in magnesium. 
A high shear value, 1.066, has been deduced for this 
mode on the assumption tha t  _~1 may be identified 
as the line of intersection of (1011) and of the perpen- 
dicular plane of symmetry  (1210). The present method, 
however, indicates a shear of amount 0.353 along the 
irrational direction '[T22"~]'. This lat ter  value seems 

much more reasonable, and renders the reported oc- 
currence of the mode less remarkable. In  the one other 
case where an application of the method leads to an 
irrational twinning direction, i.e. '[372]' for the co- 
uranium (112) mode, this is found to be in complete 
agreement with the experimental observations of 
Cahn. 

There remains the important  problem of discovering 
the factors which determine the choice of K 1 in a 
multiple lattice. This problem, and various particular 
problems of twinning, will be taken up in a later 
paper. 

Body-centred cubic metals ,  ind ium and mercury  

Twinning in a simple lattice is illustrated schema- 
tically in Fig. 2. Using a convenient and obvious 
notation, successive parallel lattice planes are denoted 
. . .  3, 2, 1, 0, l, 2, 3, . . . .  The composition plane K 1 is 
identified with the plane 0. We now translate plane 1, 
parallel to K1, so that  it becomes the mirror image of 
plane 1 with respect to K i as mirror plane. The trans- 
lation vector in question is denoted T, and will be 
referred to as a twinning translation. Such a transla- 
tion is not unique, for if L is any lattice vector parallel 
to K~, then T + L  is also a twinning translation. To 
remove ambiguity, we define T to be the smallest 
possible twinning translation of plane 1, i.e. T <  [T+LI ; 
T can be picked out at sight by projecting plane 1 
on to plane 1. The vector T formally determines a 
shear S - - T / d  (d is the interplanar spacing) which 
always accords, both in magnitude and direction, 
with the experimentally determined macroscopic 
shear. As regards the succeeding lattice planes, the 
most plausible assumption we can make is tha t  each 
plane moves in essentially the same way, namely by 
undergoing a translation T relative to its predecessor. 
These movements constitute a homogeneous shear S 
which twins the lattice, and which may  be identified 
with the macroscopic twinning shear. Bearing in mind 
the minimum property of T, we are led to the con- 
clusion given in the introduction. 

As an example of the projection technique, a b.c.c. 
(112) plane is mapped in Fig. 3. Each symbol • 
marks the position of a lattice point in the plane, 
with co-ordinate parameters as attached. The symbol 
© denotes the projection of a lattice point of the suc- 
ceeding parallel plane, and may  be regarded as ob- 
tained by a shift (Jasw0n & Dove, 1955) along the 

2 ".. : )~ "- : 1 R .~" R' 

1 = : ~ -" : ~ \  12d 
0 • : -- . : 0 

P 0) (") (iii) 
Fig. 2. (i) Original stacking. (ii) Twin configuration. (iii) Twinning translation of plane 1. (Schematic.) 
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dashed line, as indicated. A shift of double the amount 
leads to the point marked (!), which denotes the pro- 
jection of a lattice point of the next succeeding parallel 
plane. I t  is convenient to identify these three suc- 

A 

~ T 2'2'~ 

$1.1,~ 

-0,0,0 ~2,0~ 
Fig. 3. B.c.c. (112) plane. (~) ---- [~, ~, ~]. 

cessive lattice planes with the planes 1, 0, 1 respec- 
tively of Fig. 2. We now seek the minimum transla- 
tion which carries plane 1 over plane 1, i.e. so that  
it becomes the mirror image of plane 1, with respect 
to the mirror plane 0. This implies that  the projection 

of a lattice point of plane 1 must be brought into 
coincidence with the nearest neighbouring lattice 
point • of plane 1. Referring to Fig. 3, it will be seen 
that  the translation in question is defined by the move- 
ment 

® _ , [ ~ ,  ~.,3 ~],  
whence 

T = [~, 3 ~]_[~., 5 ~, ~] = [~, ~, ~] 

accordingly, since 
d(n2) = 1/]/6, 

T = 1/]/12, S = T/d(n2)= 1/]/2, ~h = [1~1]. 

The conventional deduction of this well known 
result compares unfavourably with the present deduc- 
tion in that  a knowledge of ~ is assumed at the outset, 
i.e. the plane of shear is identified as the plane of 
symmetry perpendicular to K~. No justification is 
given for this identification, which, as already noted, 
has almost certainly proved misleading when applied 
to the magnesium (1011) mode. Mapping on to K 1 
brings out clearly the essential factor which determines 
the choice of ~ .  

We now compare S with the hypothetical homoge- 
neous twinning shears parallel to other lattice planes. 
This is most conveniently done indirectly, by making 
use of the inequality theorem. The theorem may be 
proved by reference to Fig. 2(iii), in which is illustrated 
the traces of three successive parallel lattice planes 
1, 0, 1, together with a lattice point P in plane T and 
its nearest neighbouring lattice point R in plane 1; 
the vector P R  is referred to as $'. Plane 1 may become 
the image of plane 1, with respect to the mirror plane 0, 
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by undergoing the twinning translation ~"  = RR' ,  
where R'  lies directly over P;  5 "  is evidently the 
smallest possible twinning translation of plane 1. If 

is the hypothetical twinning shear defined by 5", 
we have 

5 f 2 =  ~'21d2= (oz2_4d2)ld2 = ~ / d 2 _ 4 ,  
i.e. 

lld~= ( 5 P 2 + 4 ) / #  ~ , 

where d is the interplanar spacing. Now Teplacing 8 
by E, where E is the smallest possible lattice vector, 
we obtain the inequality 

1/d ~ <_ ( ~ + 4 ) / E  2 , 

satisfied by the 5f, d of any lattice plane (hkl). As a 
corollary, for any prescribed value of 5f, e.g. ,50 = 1, 
the inequality places a restriction on l id 9, and hence 
on the planes (hkl) satisfying the inequality. 

In the b.c.c, lattice, 

E -  [½, ½, ½], E~.= ~a2; 
also 

(i) a2/d 2 -= 4(h2÷k2+/2)  if  h + k + l  is odd, 
(ii) a2/d 2 -~  h 2 ÷ k 2 + / 2  if h + k + l  is even. 

The inequality thus assumes the form 

(i) h2+k2+l 2 <_ 5f2/3+-~- if h + k + l  is od, t, 
(ii) h~+k2+12  < 4 ~ 2 / 3 +  ½e if  h + k ÷ l  is even.  

Setting ~ -- 1, the only possibilities to be considered 
are: 

(i) 100; (~) 101,112. 

Of these planes, (100) and (101) are symmetry planes, 
thus indicating (112) as the twinning plane. S and 7z 
for this plane are then found by applying the projec- 
tion technique,, as already shown. 

If the plane T has the equation h x ÷ k y ÷ l z  = O, 
then the plane 1 has the equation hx+ky+lz  = 2, 
where Ix, y, z] are the co-ordinate parameters of a 
lattice point in the plane. Accordingly, regarding P 
as the origin, and writing 8 -- [o~=, ozy, o~z], we have 
h#~+koZ~+loZz = 2. Of all the possible solutions of 
hx+ky+lz  = 2, the solution [oz=, vzy, 8~] defines the 
vector of shortest length, which property may be 
used as a means of identifying it. Once ~' is known 
for a given set of planes (Mc/), we may write 

,~f2 = o~2[d2_4,  , ~  = d ' - 2 d .  

Alternatively, of course, 5f  may be found directly by 
projecting plane 1 on to 1. In the case of the operative 
twinning plane Kx, we write $' = £o; also 3 " -  T. 
Accordingly, 

S 2 ---- O~o2[d2-4, T --- $ ' o - 2 d .  

Our results show that  $'0, T always have the direc- 
tions of ~]2, ~h respectively. The vector ~'o does not 
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usually coincide with the shortest lattice vector E, 
but happens to do so for the b.c.c. K 1 = (112). On 
setting $'0 = E = [½, ½, ½], d = ~[1, 1, 2], it may be 
readily verified tha t  the preceding equations yield the 
correct S, ~1 for this lattice. 

The indium lattice may be referred to a face-centred 
tetragonal unit cell, of axial ratio q = c/a = 1.078. 
The inequality theorem indicates Kz = (101) for all 
f.c.t, lattices within the range ½ < q~ < 3, and the 
projection method then gives 

S = (q~- l ) /q ,  B~ = [10i] .  

These results are borne out by indium, and also in- 
clude the b.c.c, results as a particular case" this lattice 
may  be referred to a face-centred cell which is tet- 
ragonal, of axial ratio q = l /V2,  whence 

(ll2) [I l l ]  -+ (I01) [i01] 

and S = (q2-1)/q = I/~/2. The f.e.c, lattice corre- 
sponds to the case q =  I, for ~vhieh S = 0 ,  thus 
showing that twins of this mode are precluded from 
forming. The mercury lattice may be referred to a 
face-centred structure cell which is rhombohedral, of 
angle c~ -- cos -I I/7, and it is interesting to note that 
with these axes K I has again the indices (101). From 
the inequality theorem, K I = (101) or (010), but the 
latter plane is never found to be operative; this may 
be due to the fact that it possibly functions as a slip 
plane, as proposed by Andrade & Hutchings (1935). 
Projecting on (i01) gives 

S = 2w/~/(½(l+w)-w2}, ~i = [010], 

where w = cos ~. The f.e.c, lattice corresponds with 
the case ~ = ½~, for which, as expected, S -- 0. 

Theory of multiple lattices 

A multiple lattice, e.g. tha t  defined by the c.p.h. 
structure, may be regarded as consisting of two inter- 
penetrating lattices, so tha t  all planes occur in pairs. 
Using an obvious adaptat ion of the preceding nota- 
tion, successive parallel planes of the one lattice are 
denoted . . . 2 a ,  la ,  0a, la, 2 a . . . ,  and the correspond- 
ing planes of the other lattice . . .  2b, lb, 0b, lb, 2 b . . . ,  
as depicted in Fig. 4. Given the plane 0a, there are 
two possibilities for the associated plane 0b, namely 
the neighbouring b plane separated by the narrow gap 

l b  : = ~ • : 
Oa D_V_-= - _ _ e - ~  = 
Ob . . . .  

(i) ( i i )  

Fig. 4. Nar row gap possibili ty.  The planes 0a, 0b assume a 
compromise  posi t ion be tween  twin  and  ma t r ix ,  b u t  the  
s tacking of 0a, 0b is approx ima te ly  main ta ined .  (Sche- 
matic.)  

and the neighbouring b plane separated by the wide 
gap. This leads to four* distinct possibilities for the 
nature of Kz: 

(1) K 1 coincides with 0a. 
(2) K 1 coincides with 0b. 
(3) Kz is taken to be the plane of an imagined mirror 

midway between 0a and 0b (narrow gap). This 
hypothetical plane is denoted by the symbol D, 
and illustrated by the dotted line in Fig. 4(i). 

(4) K 1 is taken to be the plane of an imagined mirror 
midway between 0a and 0b (wide gap). This 
hypothetical plane is denoted by the symbol D',  
and illustrated by the dotted line in Fig. 5(i). 

lb 
Oa 

Ob 
;to 

~b 

v 

- ¢ • ¢ 

D', - - - -  

A ~ A 
v w 

w w 

(i) (ii) 

¢ 

Fig. 5. Wide  gap possibility. The planes 0a, 0b al ter  the i r  
s tacking to assume an  ideal twin  configurat ion.  (Schematic.)  

Of these possibihties, (3) is equivalent to (4) in the 
sense tha t  any macroscopic results deduced with (3) 
may be reproduced with (4) using essentially the same 
criteria of calculation. However, (3) has the theoretical 
advantage of enabling us to form a simpler picture 
of the atomic movements. Any results deduced with 
(3) or (4) may also be deduced with (1) or (2), but  
more complicated atomic adjustments are required and 
are unlikely on physical grounds. For these reasons 
K 1 is identified with D in most of the following treat- 
ment, but it may be emphasized tha t  the macroscopic 
significance of the work remains unaffected even 
should this choice turn out to be wrong in any par- 
ticular case. 

As regards the detailed structure of the composition 
plane, we note tha t  in an ideal twin the planes 0a, 0b 
should be mirror images with respect to D or D',  
depending on which is operative. Such a configuration, 
however, would generally require a drastic distortion 
of the equilibrium stacking of 0a, 0b, and which could 
hardly be" tolerated if D were operative. In  this case, 
it seems likely tha t  the equilibrium stacking is largely 
maintained, but  tha t  0a, 0b move forward to a com- 
promise position between twin and matrix (Fig.4(ii)); 
the main contribution to the boundary energy then 
arises from the misfit between the widely spaced 
neighbouring planes 0b, l a  and 0a, lb. If a drastic dis- 
tortion of the equilibrium stacking could be tolerated, 
as seems likely if D'  were operative, then an approxi- 
mation to the ideal twin configuration may be realized 

* There  exists a f i f th  possibility, n a m e l y  t h a t  0a, 0b coalesce 
into a single plane,  thus  enabl ing an  ideal twin  to be produced .  
An  analysis  based on this possibility would  be ident ical  w i t h  
t h a t  based on (3). 
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(Fig. 5(ii)); in this case, the main contribution to the 
boundary energy arises from the stacking misfit of 
the widely spaced neighbouring planes 0a, 0b. Which 
kind of boundary involves the lower misfit energy 
cannot be decided from qualitative arguments. Dia- 
mond presents an interesting situation in tha t  0b is 
in any case stacked directly over 0a, for the wide gap 
between (111) planes, thus enabling an ideal twin to 
be formed without any nearest-neighbour misfit 
whatever. In  spite of this, no mechanical twinning 
has ever been substantiated for diamond, presumably 
because of the large activation energy required for the 
atomic movements. This illustrates a general principle 
implied by the results of the present investigation, 
namely the existence and choice of K 1 is determined 
primarily by the nature of the atomic twinning 
movements involved, and not by the misfit energy at 
the boundary. 

From the foregoing paragraphs, it appears tha t  the 
boundary  distortion may be ignored in calculating the 
macroscopic twinning properties of a crystal. The 
problem thus reduces to tha t  of determining the most 
likely twinning displacements of the succeeding crystal 
planes la, lb, 2a, 2b . . . . .  When a crystal undergoes 
a homogeneous macroscopic shear, the most natural  
assumption we can make about the microscopic shear 
is tha t  of homogeneity on the scale of each crystal 
plane. Topologically, however, this is only possible for 
simple lattices. In multiple lattices, the analogous 
assumption is tha t  of homogeneity on the scale of 
succeeding units of pairs of planes la, lb; 2a, 2b; . . . .  
More precisely, the pair la, lb have a mean or average 
twinning translation T,  the pair 2a, 2b have a mean 
twinning translation 2T, and so on. The successive 
mean translations T, 2T . . . .  , nT,  . . .  constitute the 
homogeneous component of the microscopic shear, 
and produce the macroscopic shape deformation of the 
crystal, namely a twinning shear of amount S = T / d  
in the direction of T. Superimposed on the homo- 
geneous component, there are inhomogeneous dis- 
placements of the crystal planes; these have no 
macroscopic effects, but are necessary in order to 
generate the twinned configuration. For a given homo- 
geneous component, the inhomogeneous displacements 
cannot be uniquely defined mathematically.  On 
physical grounds, however, we lay down the require- 
ment  tha t  they  be as small as possible. A microscopic 
shear, with homogeneous and inhomogeneous compo- 
nents thus defined, amounts as nearly as possible to a 
homogeneous shear compatible with producing a 
twinned configuration, and will therefore be referred 
to as a semi-homogeneous twinning shear. The proper- 
ties of the semi-homogeneous shear in multiple lattices 
bear a close analogy to the properties of the homo- 
geneous shear in simple lattices, in particular the for- 
mer is effectively determined by the mean twinning 
displacement of the first pair of planes la,  lb just as 
the lat ter  is determined by the twinning displacement 
of the plane 1. 

Our detailed analysis of the twinning displacements 
of the planes la, lb is as follows. Referring to Fig. 4, 
the plane l a  undergoes a twinning translation Ta, 
parallel to D, to become the mirror image of plane lb 
with respect to D. This kind of translation is not 
unique, for if L is any lattice vector parallel to D 
then T a + L  is also a twinning translation. To remove 
ambiguity, we define W a to be the smallest possible 
twinning translation of plane la, i.e. Ta "< ITa÷LI; 
T a c a n  be picked out at  sight by projecting plane la  
on to lb. Similarly, the plane lb undergoes the smallest 
possible twinning translation Tb, parallel to D, to 
become the mirror image of i a  with respect to D; 
T b can be picked out at sight by projecting plane lb 
on to ia .  The mean or average of T~, Tb is given by 
T = ½(Ta÷Tb). The relative translation of the two 
planes is given by W a -  Tb, defining the reshuffle vector 
t = ½(T~-Tb); it will be seen tha t  T~ = T + t ,  Tb = 
T - t .  We may  thus regard the planes la, lb as under- 
going a common translation T (homogeneous compo- 
nent), accompanied by a horizontal reshuffle t , - t  
(inhomogeneous component) which carries them into 
the twinned configuration. The vector T formally 
serves to define a shear S = T/d ,  which may  be 
expected to have macroscopic significance. For the 
c.p.h. (1032) mode, the fl-tin (331)* mode, and the 
s-uranium (112) mode, referred to hereafter as X 1- 
modes, S accords in both magnitude and direction 
with the experimentally determined macroscopic 
shear. This consideration, and the fact tha t  t never 
amounts to more than an interatomic spacing along 
the most close-packed lattice direction of Kz, suggest 
tha t  Ta, Tb describe the actual net displacements of 
the planes la, lb when mechanical twinning takes 
place in Xl-modes. 

So far we have completely ignored the possibility 
of an interchange of the levels of la, lb (Fig. 6). 
Thus, the plane la  may undergo a translation T ' ,  
parallel to D, till it projects directly over plane la .  
Such a translation is not unique, for T ' + L  produces 
the same effect as T' .  To remove ambiguity, we define 
T '  to be the smallest possible translation which carries 
plane la  over plane la ,  i.e. T '  < IT '+L] ;  T '  can be 
picked out at  sight by the projection method. The 

Ob . . . .  

(i) (ii) (iii) 

Fig. 6. Interchange mechanism. The planes la, lb move for- 
ward by a common translation (ii) and interchange levels 
Off). These movements do not necessarily take place suc- 
cessively, so that the intermediate configuration (ii) has 
not necessarily any physical significance. The planes 0a, 0b 
assume the same final position as in :Fig. 4. 

* These are the indices of the operative mode when the 
fl-tin crystal is referred to a face-centred tetragonal unit cell. 
This choice of cell facilitates comparison with indium. 
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same translation, applied to plane lb, carries it directly 
over lb. If these translations are combined with an 
interchange of the levels of the planes la, lb then a 
twinned configuration is achieved, i.e. la, lb become 
the mirror images of la, lb respectively, with respect 
to the mirror plane D. The homogeneous component 
of the twinning displacements is T ' ,  and the reshuffle 
vector is identified with the interplanar spacing vector 
between la,  lb. For the rhombohedral (110) mode, 
and the s-uranium (130) mode, referred to hereafter 
as Yl-modes, the shear S = T'/d accords, in both 
magnitude and direction, with the experimentally 
determined macroscopic shear. This consideration, 
and the fact that  the stacking configuration of la, lb 
is favourable for interchange, suggest that  the inter- 
change mechanism describes the actual net displace- 
ments of la,  lb when mechanical twinning takes place 
in Yl-modes. 

When the horizontal reshuffle mechanism is applied 
to Y,-modes, it is found tha t  T > T'. Conversely, when 
the vertical interchange mechanism is applied to X 1- 
modes, it is found tha t  T ' >  T. Consequently, the 

nature of the mode defined by any given rational 
composition plane, i.e. whether an Xl-mode or a Y1- 
mode, may be established at once by working out 
T and T '  and comparing their magnitudes. In  all 
cases, the vector of smaller magnitude predicts the 
magnitude and direction of the observed macroscopic 
shear. Bearing in mind tha t  the smaller of the two 
vectors T, T '  defines the smallest" possible semi- 
homogeneous parallel to K~ tha t  twins the crystal, 
we are led to the conclusion given in the introduction. 
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Niobium dioxyfluoride and tantalum dioxyfluoride have the ReO 3 structure in which fluorine 
atoms and oxygen atoms are randomly distributed in octahedral positions about the metal atom. 
The simple cubic unit cell for NbO~F has a = 3.902±0.001 A; and for TaO2F, a = 3-896±0-003 A. 

Preparat ion  

A weighed quant i ty  of 99.9% Ta metal was dissolved 
in 48 % aq. H F  (reagent grade) in a platinum crucible 
at  ,-- 80 ° C. The clear colorless solution was evaporated 
to dryness on a steam bath and then heated at 250 ° C. 
for 1 hr. Subsequent heating for 1 hr. at  250 ° C. 
resulted in 0-19% weight loss. The white powder was 
analyzed chemically: 76.1±0.5% Ta, 9.04±0.10% F, 
0"15±0"01 ~ H (oxygen was not determined directly). 
Tantalum dioxyfluoride was found to be stable in air 
at  300 ° C. but  decomposed above 500 ° C. into TarO 5. 
When heated in dry oxygen TaO~F lost some tantalum, 
presumably by volatilization of TaF 5. 

Niobium dioxyfluoride was prepared by digesting 
pseudohexagonal :NbgO s (Frevel & Rinn, 1955) in 
48 % aq. HF, evaporating the solution to dryness, and 
heating the resultant white powder at 250 ° C. for 1 hr. 
A larger quant i ty  of NbO2 F was prepared by dissolving 
niobium metal in 48 % aq. H F  and heating the solid 
from evaporation to 275 ° C. for 5 hr. A chemical 

analysis yielded 62.6+0.5% Nb, 15-61±0-10% F, 
0.21±0.01% H. 

X - r a y  data and s tructure  ident i f icat ion 

Powder diffraction patterns were obtained with fil- 
tered Cu Kc~ radiation in a cylindrical G.E. camera 
(71.8 mm. radius) and with a l~orelco diffractometer. 
Relative intensities measured photographically com- 
pared favorably with the integrated intensities from 
the diffractograms. No indication of preferred orien- 
tation of crystallites was observed between pressed 
powder samples and carefully loaded samples. The 
patterns obtained could be indexed on the basis of a 
primitive cubic cell. Prolonged exposures or slow 
scanning failed to reveal any additional lines requiring 
a larger unit cell. The powder of tantalum dioxy- 
fluoride was found to be isotropic under a polarizing 
microscope. A comparison of the powder pat tern  of 
TiOF 2 (Voores & Donohue, 1955) with tha t  of Ta02 F 
immediately suggested the correct structure; namely, 


